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6 1

ABSTRACT

Suppose that X. .... X are samples drawn from a population with density

function f, and f ix) = f (x;X 1 . . . . . X ) is an estimate of f(x). Denote by m =
n n n

f If (x) - f(x) dx and M = E(m ) the Integrated r-th Order Error and Mean

Integrated r-th Order Error of f for some r > 1 (when r = 2, they are the familiar

and widely studied ISE and MISE). In this paper the same necessary and sufficient

condition for lim M = 0 and lim = 0 a.s. is obtained when f (x) is the
n-oo nr n-,cp nr n

ordinary histogram estimator.

AMS 1980 Subject Classification Primary 62G05.

Key Words and Phrases Consistency, Density Estimation, Histogram.

p -- b

o

..



!* 2

Suppose that X ,X are iid samples drawn from a d-dimensicn-
n

population with density function f. Let f (x) = f (x;X , X ) be an estimator (d

fix) The Integrated Square Error (ISE) and Mean Integrated Square Error (MISE) of f

are defined by

I SE = f If (x) - f (x) 12dx,
n2

MISE E" If n(x) - f(x) 12dx

respectively. They are important and widely used criteria in evaluating the

performance of an estimator f Quite a lot of works appeared in the statistical

literature dealing with the asymptotic properties of them, for various types of

estimators, such as kernel estimator, orthogonal series estimator, nearest neighbor

estimator etc. For example, a much discussed problem is to find the conditions

under which the assertions
SlimMISE , 0, 1ir ISE = O,a.s.

are true. Various conditions have been proposed in the literature which are f;r

from necessary

In this paper we obtain the necessary and sufficient conditions of I1) for rl-',

histogram estimator In fact, we have done more For given constant r > 1, defirw'

the integrated r-th order error m and mean integrated r-th order error M by
nr nr

m = If (x) - f (x) I rdx, M = E (mnr n nr nr

We obtain the necessary and sufficient conditions of M -. 0 and m t i
fr

-- a s. In the case of r=1 the problem has been considered by Abou-Jaoudef[1] [

-"- I see also [4], pp 19-23)

A d-dimensional histogram is defined as follows Choose a ta
n

d dc . h = (hh I R with h > 0, =-1 d Denote by k the numb-- " dn F

of those X .X falling into the set A (c c d I x=x X Id a

(0
ch < x < a + (c 1)h =1 d

ifv. -- in
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Define

fI' nf(x) k/ (nh In h ), when x A n(cI '

C 1 .I Cd 0,+1,2,

(2)

which is a histogram estimator of f W).

Theorem. Suppose that

f fW (xdx < co, for some r>)

(3)
lrn max h =0
n-bcol<i<d in

14)
lim nh h
ni-., In dn =c

Then for the histogram f defined by (2) we have

I5 11mm 0,a.s.
ni-, nr

(6)

I im M 0,ni,c nr
(7)

Conversely, if (6) or (7) is true, then (3), (5') are true. Further, if fix) does not have a

f orm CI

Then~~~~~~~~ (4' is als tre Hereb is a) osatAi,. , ) x (
d

jI d
(d) (JI
'XY a + ih < x < a + )i + 1)h . .d). and (xo JjO JO jO 8

denotes the indicator of B.

Proof. For simplicity of writing, we shall give only the proof for the case of

d=1, as the general case involves no essential change. For d=1 and writing h fur

h ~,the conditions (4') and (5') reduce to
Ilimh -0
n5..w n

% V~

Sl!
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I imnh =o
" n-*c n

-* ., (5)
In the sequel we shall often write h for h , a for a . Note that we may assume

jai < h without loss of generality. Write
= = [a + Yh, a + (£ + 1)h),

' (x) - I (x),

= f (x) dx

Then Ef (x) = pY,/h, when x F- A The symbol "C" will be used to denote any

constant not depending on n (but may depend on r).

The proof will be divided into four parts.

(A). Sufficiency of (3)-(5) for (7)

First consider the case of r > 1. In order to prove (7), we need only to

show that

()r -r -r+1 r.
If (x) - Ef (x)Irdx = n h 1 (9 (X.) - p kr

f If (x) - Ef (x) I rdx-.On

~(9)

as n -. (9) is easy to prove Suppose first that f is continuous on (-cow), then

for any fixed constant A > 0,

A
f I f (x) - Ef (x) I rdx-+O,as n- =
-An

On the other hand, by Holder inequality, for any fixed constant B > 0 we have

E I f (Ef (x))rdx:A ( [-B,B]c }

:A n [- ,B
A -. r + I

E {h Cf f (x) dx)r:A a[-BBJ}

fr
S f" fr (x) dx:£C [-B,B] c

.-

@46%
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Jrf (x) dx
[-B,B]C

(10)

Hence

~ f I f(x) - Ef(x)ir dx: A C[E-B,BJ I

< 2r{ f fi x x+ f (Ef (X) ) rdx:A C[-B, B]I

[-6.8B] C

< 2 f f(x) dx

(-BB]c
Summing up the above arguments and noticing (3), we obtain (9). For the general
case, choose a function g such that f If (X) _ g(x) r dx < some given c > 0, define

g-1 ~~xfrx ,+' a rumn iia otagnx h91'xfrxeA Q ,+...a rumn iia ota

leading to (10) gives

I E fxW - g n(X Irdx < f jf(x) g g(X) Irdx <

From this and the fact that (9) is true when f is continuous, (9) follows easily.

For a proof of (8), put Y2,z = I (X.) p, S)9 (I (X p2 I,

Is nk 1 " If 1 < r < 2, then from the inequality Ii+ air < 1 + ra + Clair (a:

reakQ), we have

r < S r + Cl r s r-2
nklj n1,£J nkI n-1,i n-1,, n2k

Theref ore,

EIS kIr < EIS 1£r + CEYn92 < CEEIY.ZI r< 2Cnp,

which in turn implies

nrhr stjp ET. < nhrl 2 , 2C(nh) ri 0
5:j n j r-2np-

Suppose that (1 1) is true for r c (1, m], we proceed to show that it is true for r

c (m,m+ 1). Since when r > 2 we have the inequality

1+ alir < I + ra + Ca 2 (+ ar-2Harel

It follows that
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IsnI < I + rlS I -2Sn9 In-1, n-1 , n-1, l nk

r-2 2 r
+ Is I Y + ClYn

(12)

which in turn impliesr cI r r-2 2
EISn ,Ir < EISn, + CSn I nEY + CEJY

Noticing that EY2 ,< p , E Y . p£, we have

r + (Er-2
EIs Ir < EIS_ + CP (E-IS, + n n,.n-I

Therefore

r n-1 E IS j r-2 + npCElSngI < CP ,= j I.I + pC(3

(13)

-r -r+1n h 1 s<JnETj.
_n jr

< C (nh) -r+l max 'S Ir-2 + C(nh) -r+1
-- I <Jnj PX, 9 S

(14)

Since f is a probability density and ffr(x)dx < , r > 2, we have fr- (x)dx < .

Hence when r > 2
t'".:': -r+2 r-1 i-f-I

h P, r ff (x) dx= C < c

(15)

By induction hypothesis

-r+1 -r+2
n h max ET 0, as n -o

Sl _j<n j,r-1
(16)

from (14)-(16), we have

-r -r+1
n h max ET

l:j<n jr
<"h)r+1 r-1 I/ (r-1) max E IS r-1 ) (r-2) /(r- 1)

(h(< C (nh) -r+I (r-2) / (r-1) r-2 (r-2) /(r-1)

-r+1 -r+2 (r-2)-(r-1) -r+-1
+(n h max ET j C(nh)

1~j~n(r-r-

) -1 -r+1 -r+2 (r-2) / (r-1) r+
- =C~n) i h I __j f<n j,r-l

as n - c. This shows that (1 1)is true for r c (mm+ 1],concluding the proof of (1I)

.. ,-.'...-."-. -. -.'.. '... ", ,- .... .-.-....... "..-.-. .- , ..-. '.'. " --'.".-.. ".-. -. - ',".."- C£ .",.-l.h"-.-_ .r
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hence 7), for r>1 When r = 1 (7) is a consequence of (6) for r 1. which .',e

are now going to prove

(B) Sufficiency of (3)-(5) for (6)

Again first consider the case of r>1. Define T as before, then
nr

I )f (X)f(x) rdx = n-rh -r+l T
-., n nr

Hence we need only to show that

li i = 0, a. s.
n_4 o' nr

(17)

Define

r - 1
jkl Y- =1 Is z4I sign (%J

j U2 = Yj - = 1-9.jr- U

and pr )ceed to show that for any given c > 0

k-r -r+1 -2
2 P (n h 2in 4 j- I> e) < Cn i 1,22Uj I X =i

- -J=2

k(18)

In the following we shall write 4 71 for 4 T) Since {1 k

2, 3, . is a martingale sequence, we have

-4 -44rh -4r+C n4J < n h CE ( Z jTjI4

=2

(19)

From an inequality of Rosenthal (see [51, p23),

n )4
oE

":-.':-. E( j -I £

j- . j 2 i '

(=2

n

.. + E

2.-0)
..-"Here F is the o-field generated by X .. .x Since 9 I, < 3.by Jensen s

-'.-"inequality we have

Z-d"
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E (

< C E' T

< C 7 p E I

=2 
I

It car be shovn easily by using i13, that

4 2r-2 2r- 1E I < +( (np,) )<C (+l (np

Noticirg that In f _ x) dx < m and nh .4 . we have

*=2 I

2--1 2r

2--1 2 r - 2  . -r+ 2
* Cr±~! ( p h

< Cr-  ',h

2(21)

£ E ) r F 1)

2 21

222

• "- - S. - . -

4 2,)~ 7 i E Ti Ti F*

S2 22

<Cn~ E 7 p T1 2 c) PT
22

The last step is valid in view of Jensen s inequality and :p2  1 Therefore, fron

'-1j,. - i. -1 ,
2 22 4 4 1/2l 2

E 2T , E(6 E Tj E T F )
=2 j ;.- j- l, j-1 ,m -

an 2 r-2
an E p. , < C(I+ (nP E

S. We obtain

- - i
.-;=2** - - - ~ 5 = *~ 5. 5*
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I,,2 2
E E

.< Cn P E-n 4 (ETj 4 41/2
E''' 9- -1191 +  Cn M _1 P'kP Enj~l

J=2 =2 92 -1,9, -,m

n 2 2r-2 nr-1 2
< Cn Z p (1+(npg) + Cn Z ( p (l+(npg)

Sj=2 j=2

2< Cn2 (1 + (nh) 2r-2 p r h-r+ ) 2 + 2 r -r+1 2

2 2r-2

.:.. < Cn (nh)

(23)

From (19)-(21) and (23), (18) follows.

Now to prove that for r > 1 and given E > 0, we have

r1 -r-r+ 2
P h 1x T > h T c) C/n0 , l < k n k r >

(24)

First suppose that 1 < r < 2. We have

Isi lr < Is 1  Ir + ClYn,1 r + rS rsign(S ,)Yn

Hence

n n
IS < C IY r + r E Y

.n.. 9 1 j=l 94

and

-r -r+1 maxnk..-,n h li~nT kr

< Cn rh -r+l1 Y Ij

-r -+

. + n h- r + rn2m xtI E YJZT1J- 1

,.-- - J=2 'k~ -l k

(2r)

Since

-r -r+1 r -r+I.-,.-n h Z , IYj <  2 (nh)-r 0

, From (18) and (25), (24) follows.

Suppose that (24) is true for r < m, and proceed to show that it is true for

r c (m, m + 1]. Since r > 2, we have
1'o

,.,-/

04

\*v y
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I r < Is l Ir  + rlS r-2s
is- n-1 , + I n-n-I,2. n2.

+ CISn- r-2Yne 2+C n. i r

Hence

-r -r+1 -r h-r+1 r*n h maxnTk < Cn h . IY I

m k

I 
r - r + 1l

+ rn h M X I I Y
-U - - J=2

k

-r r+1 --. ~~~+ Cn h 2i<lZ j2-
l. _ -- -- j=2 '

+ C(nh) m2 x i pj Is Ir -  H:.:.. Z<_j<n 2. i- , 2. -

(26)

where S . Observe that H /r is the expression in (18), nhH /C isi.2.2 3

also of the form in (18) with r replaced by r - 1 Further, since r > 2 and

ffr(x)dx<-, we have fr (x)dx< -. Therefore, the inequality (18 can be applied to

" .both H and nhH ' Further, nh -. o. so we obtain
2 3

P (H 2+H3 >E) < C/n2

(27)

for arbitrarily given E > 0 Also.

- + r -r+1
n hj IY < 2(nh) - 0

j=1

(2 )

Since f f Wldx < c, by induction hypothesis, we have

P(n-r+l h-r+2 M TC/n 2
P.n-h l< <n kr-1 - -

(29)
r- r-2

By Holder inequality and the fact p P2  _< Ch

-r+l r-2
C (nh) (n PTS-max~n 1-,1

.-. - <C<n Tk,r-I

(30)

(29). (30) together give
/..

/#'



• .- C/n 2

P(H4 > E) <

W (31)

for arbitrarily given F- > 0. Summing up (26)-(28) and (31) we see that (24) is true

for r c (m, n + 1], concluding the proof of (24) hence (17). Thus we have proved

(6) for the case of r>1.

Now consider the case of r = 1. Since f x) as a function of x in 1-o, o) is

*a probability density, in order to prove (6), it suffices to show that for any fixed

positive integer N, it is true that
Iim f If(x) -f (x) Idx = 0, a. s.
n-, o/  n

(12)

NH

where U A H =[h ],the integer part of h- 1.

To prove (32), it suffices to verify the following two assertions:
I-1 i f If(x) - Ef (x)Idx = 0

n-. n

(33)

i iMf If, (x) Ef(x) jdx 0, a. s.7.i n.o I n n'

(34)

The second assertion follows directly from Lemma 3 of Devroye [3] if we note

the fact that NH/n < N/nh -1 0. The first assertion can be verified by using a

]. continuous function g on [a-N- 1,a+N+ 1] such that the integral

a+N+ 1

f If(x) - g(x)Idx
.', .'a-N- 1

does not exceed given c > 0. Trivial details are omitted.

(C) Necessity of (3), (4)

Since

n' -"'. '.'"- "f r(x) dx =n h I ( X (x)l - r)

n¢ Xi I 2

-r -r+1 r r r-1
< n h ( (l(X) -p2 )i) < 2r/h < C

%'o

Therefore, if (6) or (7) is true, then (3) is true.

"'p
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Suppose that f(x) does not have a form
OD

E C I [a+,0a+W, 1 )0 x

9'-C k[a0 + h0 a0 +9.1)h0
(35)

for some a0, h0 > 0 and {C 9. We want to prove that if (6) or (7) is true, then hn

0. Suppose in the contraty that h 4 0. Then there exists subsequence {h , i = 1,
n n

2, .... } such that h -. h > 0 as i -, . h must be finite, otherwise we wouldn 0 0

have f (x) -. 0 uniformly in {X I X 2' and x, and this contradicts obviously

with any one of (6) or (7). Since I an)I < h n without losing generality we may
-- n

0 i

assume that a - a , also finite. From these facts it follows by the law of large

numbers that if we define

a +(,+ 1)h
* , _i 0=h 0

g h0  f f (t) dt,

0 0
x , [a +9,h a +(2, +1)h R 0. -142

0 0

Then we have

M f Ifn ( - g(X) rd 0, a. s. (6.. n-.,.. I  n (36)

for any bounded interval I. Since at least one of (6) and (7) is true, (36) implies that

- f = g almost everywhere on (--, o) (Lebesgue measure). Hence f can be expressed

in the form (35), contradicting the assumption.

(D). Necessity of (5).

Suppose in the contratry that (5) is not true, then there exists subsequence

-h } such that h 0 0, nh -b u < -. We restrict ourselves to the discussion of
n n i n

the subsequence. For simplicity of writing and without losing generality, we may

assume that h -1 0 and
n

Slimnh - u < cc
n-xo n

(37)

Since h -- 0, we have

niM f If(x) Ef (x) Idx = 0.T;n-+oo n

(38)

% %S

0 '
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In fact, as pointed out earlier, (33) is true for any bounded interval I. Since fix) and
Ef nx) are probability density functions on (-c, c), this fact implies (38) Now it is

easily seen that if at least one of (6) and (7) is true, then

in Ef If (x) - Ef (x)ldx = 0
n.o n n

(39)

In fact, if (7) is true, then for any bounded interval I we have by Holder inequality

that

%',,.:. Ef J f (x) - f(x) Idx -. O, as n+
n

(40)

Since f(x), f (x are probability density functions, it is easily seen that

f If (x) - f(x) Idx < 2f If (x) - f(x) dx + 2[1- f (x)dx]-.,n n

(41)

From (40), (4 1), it follows that

nli Ef If(x) - f(x)Idx 0,',.,.:n-.Oo n

(42)

Now (39) follows from (38) and (42) If (6) is true, then by Holder inequality we

have

lrn f If (X) - f (x) Idx = 0, a. s.
-.n- n

(43)
for any bounded interval I. From (43) and the dominated convergence theorem, we

again have (40) and hence (39).

% First we assume that u=0. Write A U [X -h, X +h]. By the definition, f (x) = 0
n n

f or x r A. So we have

Ef f (x)dx - 1.
A

n
,~ .Denote by X(A I the Lebesgue measure of A nThen

X(A) 2nh -, 0, a s n
which implies that

i" ". ". 'S

I rn E f (xidx= 0.

=- -. *.:o A

n
Thus

Ef If (x) f f(x) dx > Ef If(x) f f(x) d xnn
A

n

-A -- _n

0. A

'"'""" 
'KXA whchiple ta
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>Ef f n (x)dx-Ef f(x) dx- 1, as n-,.
A A
n

From this and (38), it follows that

I im Ef If (x) -ef (x) dx 1,
n. n n"

(44)

which contradicts (39).

Now we assume 0 < u < o By (39), there exist a sequence of positive
constants, say C, such that C _, a, C /n -, 0 and

n n n

CnEJ If n(x) - Ef (x) Idx - 0

(45)

Write k = [n/C '. Then
n

* CEf If (X) - Efn (x) Idx

Cn (nh) ElI (I (X) - P I

n

(kh) 1 EIE _  (I£ (X.) - pk)lx 1  Xk) I

k(kh) ElI k I P(-X P

(46)

Since h -b- 0 and kh < nh/C -0 0, by (44) we have

k,.r k. oolim (kh)-lJ E I  (I .(X i) - p l) I = 1

k 1wl k

On the other hand. (45) and (46) together imply

kEl(k h)' El (19 (X ) - 9 -  0, as n - o.
(k 1 =I p

Thus a contradiction is reached, and the proof of the Theorem is completed

Remark. The method of proof in (D) can easily be adopted to the case of the

kernel estimate.

'.

ka'

-I
J.

. .. ... . .. . ... - .. . .. .. ...-... . . -.. ... ..., ., ..... .- ... ..,.-. .,av '. ,;,,.'; ',,:. .'.:,:, ..% .,:,; .
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